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Abstract. We present an approach to analyse time series of OH∗ temperatures with unequal spacing. The approach enables

the identification of significant periodic fluctuations and the derivation of time-resolved periods and amplitudes of these fluc-

tuations. It is based on the classical Lomb-Scargle periodogram (LSP), a method that can handle unequally spaced time series.

Here, we additionally use the idea of a moving window. The significance of the results is analysed with the typically used false

alarm probability (FAP). We derived the dependencies of the FAP levels on different parameters that either can be changed5

manually (length of the analysed time interval, frequency range) or that change naturally (number of data gaps). By means

of these dependencies we found a fast and easy way to calculate FAP levels for different configurations of these parameters

without the need of a large number of simulations. The general performance of the approach is tested with different artificially

generated time series and the results are very promising. Finally, we present results for nightly mean OH∗ temperatures that

have been observed from Wuppertal (51◦ N, 7◦ E, Germany).10

1 Introduction

Many time series in atmospheric sciences are characterised by an unequal spacing of the data points, e.g. due to data gaps. The

OH∗ temperatures which have been observed from Wuppertal (51◦ N, 7◦ E) since the 1980s also exhibit an unequal spacing.

The time series of nightly mean OH∗ temperatures repeatedly has data gaps mainly because of bad weather conditions during15

some nights that prevent useful measurements (see e.g. Bittner et al., 2000). Within a single night such data gaps can also

occur when clouds move through the line of sight. The measurements before and after such a cloud contimination are useful

at all. Typical methods such as the fast Fourier transformation (FFT) rely on a discrete sampling with equal spacing. Thus, a

time series like that of OH∗ temperatures has to be manipulated, e.g. with interpolation techniques before the analysis, which

may introduce artifacts. The Lomb-Scargle Periodogram (LSP; Lomb, 1976; Scargle, 1982) is a method that can handle this20

drawback, as it can be used for time series with unequal spacing.

A second important point with respect to the analysis of periodicities is the variation of these periodicities with time, i.e. the

period is not stable during the complete analysed time interval or the amplitude varies. In such cases many methods as the
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FFT and the LSP will lead to results of a mean state only. The wavelet transformation is a method that is very useful then as it

delivers time-resolved information on the periodicities of the analysed time series. For example, Bittner et al. (2000) used the25

wavelet transformation to analyse the variability of the nightly mean OH∗ temperatures after assimilation of the data gaps in

the time series by use of the maximum entropy method (MEM). The goal of the presented study is to avoid such an assimilation

of the data gaps and still derive time-resolved information on the periodicities. Thus, we combined the LSP and the idea of a

moving window to identify and characterise periodicities in unequally spaced time series even when the periodicities vary with

time.30

The main intention of the paper is to describe the approach from a user perspective and to illustrate the capabilities of the

approach with examples of artificial data sets as well as observations. The paper is structured as follows. In Sect. 2 the classical

LSP and the new approach are explained. The evaluation of the significance of obtained results is made in Sect. 3. Finally, the

method is applied to artificial data and observations of OH∗ temperatures in Sect. 4. A short summary is given in Sect. 5.

2 Methodology35

2.1 Classical Lomb-Scargle Periodogram

The Lomb-Scargle Periodogram (LSP) was developed by Lomb (1976) and Scargle (1982). The power is defined as

PX(ω) =
1
2
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where Xj are the measurements at the times tj , ω is the angular frequency (ω = 2πf ), and the time offset τ is defined as

tan(2ωτ) =

(∑
j sin2ωtj

)

(∑
j cos2ωtj

) . (2)40

An advantage compared to other methods such as the FFT is that the LSP can handle unequally spaced time series. A

prerequisite is that the time series has zero mean before the calculation of the power. With the given definition the LSP has

two useful properties: 1) It is invariant to a shift of the origin of time. 2) It is equivalent to the least squares fitting of sinusoids

(e.g. Horne and Baliunas, 1986). Scargle (1982) showed that the definition of the power is the same (except for a factor of 1/2)

as the reduction in sum of squares (sum of squares of data – sum of squares of residual) when using least squares fitting of45

sinusoids (see Scargle, 1982, Appendix C). Thus, the maximum power in the periodogram occurs at that frequency that leads

to a minimum of the sum of squares of the residuals when a sinusoid with this frequency is fitted to the time series.
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2.2 Moving LSP

The aproach used in the following analyses is based on the classical LSP, but the whole time series is analysed sequentially.

The procedure is as follows:50

A window size (time interval) , which is typically much smaller than the length of the whole time series, is defined. Then the

procedure starts at the beginning of the time series.

1. the LSP for the data points within the window (time interval) is calculated

2. the window is moved by 1 time step (minimum possible sampling step)

3. move to step one until the end of the times series is reached55

By executing this procedure one single LSP is calculated for each possible part of the time series with the length of the win-

dow (time interval). By contrast to the LSP for the whole time series at once, this procedure delivers time-resolved information

on the periodicities and amplitudes.

2.3 Normalisation of the LSP

There are different ways to normalise the periodogram: sample variance (or sum of squares), known variance of data, and60

variance of the residuals (see e.g. Cumming et al., 1999; Zechmeister and Kürster, 2009). Here we use the normalisation by

the sample variance and sum of squares, respectively. These two only differ by a constant factor that relies on the number of

data points N . The power in the periodogram can vary between 0 and (N − 1)/2 when using the normalisation by the sample

variance and between 0 and 1 when using the normalisation by sum of squares (when the factor 1/2 is also considered (compare

Sect. 2.1)) (e.g. Cumming et al., 1999; Zechmeister and Kürster, 2009). As the height of a peak in the case of the normalisation65

by the variance depends on the number of data points N, the peak heights for the same sinusoid differ for different number of

data points. Since the data gaps in the time series of nightly mean OH∗ temperatures are randomly distributed, the number of

data points in different possible windows of same size can vary. In order to make the peak heights in these different windows

comparable we prefer the normalisation by the sum of squares. This type of normalisation has another useful property. Because

of the equivalence to the reduction in sum of squares when fitting a sinusoid, the normalisation by the sum of squares leads to70

a normalised power that gives the contribution of the sinusoid to the total sum of squares, and, therefore, to the total variance.

In this way it is a measure of the explained variance. Here uncorrelation between different sinusoids and/or a sinusoid and

the residual is assumed. This is, at least approximately (increasing with number of data points), the case for sinusoids with

different periods and, thus, the variances of the individual parts (sinusoids) of the time series add up.

Alternatively, one can determine the amplitude of the sinusoid at each frequency. This is also based on the equivalence of the75
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periodogram power and the reduction in sum of squares. Furthermore, the variance of a sinusoid is given by A2/2, where A is

the amplitude (e.g. Horne and Baliunas, 1986; Smith, 1997). With these two relationships the amplitude can be calculated as

A(ω) =

√
4PX(ω)
N − 1

. (3)

In total the LSP delivers information on the periodicities together with a measure of the explained variance when a sinusoid

is fitted to the data and the corresponding amplitude of the sinusoid. An example periodogram is shown in Fig. 1. The time80

series that is analysed is a combination of two sinusoids with different periods and amplitudes. The first one has a period of

10 days and an amplitude of 1 K whereas the second sinusoid has a period of 35 days and an amplitude of 0.5 K. The total

length of the time series is 60 days. Thus, the variance of the second sinusoid is only one quarter of the variance of the first

one. This can be seen in the normalised power (black curve in Fig. 1) where at 10 days a value of about 0.8 is reached and at

35 days a value of about 0.2. Because of the different amplitudes, the sinusoids contribute to 80 and 20 % to the total variance85

of the time series, respectively. And also the amplitudes itselves are well determined by using Eq. 3 (see red curve in Fig. 1).

3 Significance evaluation

3.1 False alarm probability

An important quantity with respect to the LSP is the so called false alarm probability (FAP). It gives the probability that a peak

with a height above a certain level can occur just by chance, e.g. due to noise. The distribution of the periodogram powers90

and, thus, the description of the false alarm probability depends on the type of normalisation (see e.g. Cumming et al., 1999;

Zechmeister and Kürster, 2009). In the case of the normalisation by the sample variance the periodogram powers follow a

beta distribution (Schwarzenberg-Czerny, 1998). As the variance and the sum of squares differ by a constant factor only, the

type of distribution is the same. Hereafter, we only describe the situation for the normalisation by sum of squares. At a single

frequency the probability that a peak height z exceeds a value of z0 is given by95

Prob(z > z0) = (1− z0)
N−3

2 , (4)

where N is the number of data points (Zechmeister and Kürster, 2009). Since periods in a frequency range are analysed, one

is interested in the probability that one peak somewhere in the periodogram covering a frequency range ∆f exceeds a certain

value by chance. This is given by the FAP that is defined as

FAP = 1− (1−Prob(z > z0))Ni , (5)100

where Ni gives the number of independent frequencies (see e.g. Horne and Baliunas, 1986; Cumming et al., 1999; Zech-

meister and Kürster, 2009, for some discussion on FAP). There is no analytical way to describe the number of independent
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frequencies, but a good way to determine Ni is the use of Monte-Carlo simulations (see e.g. Cumming et al., 1999).

The procedure to determine Ni using simulations is as follows. As already pointed out by Scargle (1982) the cumulative dis-

tribution function (CDF) can be used to determine the FAP. We use a large number of samples of random values taken from a105

Gaussian distribution each. Then we calculate the LSP for each sample and determine the height of the maximum peak within

the analysed frequency range. From this maximum peak heights we calculate the empirical CDF which gives the probability

that there is a maximum peak in a periodogram with a height equal or below a certain value. Consequently, the FAP is then

1-CDF. In the last step we determine Ni by fitting Eq. 5.

An example for the results of this procedure is shown in Fig. 2. The example shows the FAP derived from ten thousand samples110

of Gaussian noise, where each sample has 60 data points and a sampling of 1 day−1, thus, the complete time interval length is

60 days. The frequency range used for the analysis is ∆f = 1/2 – 1/60 day−1. The frequency sampling during these simulations

(and all other simulations) is fixed with respect to the length of the time interval, thus, the duration of observations T , and the

frequency range. We evaluated the LSP atNfreq equally spaced frequencies in the frequency range ∆f , whereNfreq = 4T∆f ,

which was shown to be an adequate sampling to observe all possible peaks by Cumming et al. (1999). The blue coloured circles115

show the results for Prob(z > z0) at a single frequency. The theoretical curve of Eq. 4 is shown in magenta. The determined

probability and the theoretical one match very well. The results for the FAP (1-CDF) are shown as black coloured circles. The

red curve is determined by fitting Eq. 5 to these data points. The number of independent frequencies Ni in this case is about

72. From this curve different FAP levels can be determined. In the following we typically use a FAP level of 5%, which means

that in only 5% of the noise samples the maximum peak in the complete frequency range exceeded the corresponding peak120

height value. In Fig. 2 the dashed horizontal line marks a FAP of 5% and the intersection with the red curve gives the height of

about 0.225 that corresponds to this level.

3.2 Dependency of Ni and FAP

The number of independent frequencies Ni and the false alarm probability depends on different factors: the length of the

analysed time interval T , the data gaps within the time interval and the analysed frequency range ∆f . Since in the period125

analysis of the OH∗ temperatures different situations with respect to data gaps can occur and, additionally, the length of the

window (time interval) and the frequency range can be chosen, one would have to perform simulations for all situations. As

these simulations are much more time-consuming than the calculation of the LSP itself, we want to avoid these numerous

simulations. Thus, we examined the different dependencies to find a faster and easier way to determine Ni and, thus, the FAP

levels. The sampling of the time series used for these analyses was chosen to be 1 day−1, which is the same as for the nightly130

mean OH∗ temperatures without data gaps. For the different analyses we varied only one parameter and kept the other two

fixed. In all cases ten thousand noise samples were used to determine one Ni value.

Firstly, we analysed the dependency of Ni on the length of the time interval T . Here the frequency range was kept constant and

the time series had no data gaps. As this is the case and the sampling is 1 day−1, the length of the time interval is equal to the

number of data points N , i.e. a time interval of 60 days has 60 data points. The frequency range was fixed to ∆f = 1/2 – 1/60135

day−1 for the first analysis. Since the width of a peak is inversely proportional to the length of the analysed time interval (see
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e.g. Cumming et al., 1999; Zechmeister and Kürster, 2009), the number of independent frequencies Ni for a fixed frequency

range should linearly increase with increasing time interval length. Figure 3 shows the results for Ni for different time interval

lengths T between 30 and 90 days (typical values used for the analysis of nightly mean OH∗ temperatures) as blue full circles.

Obviously, the dependency is linear. A linear fit including an additional intercept leads to an intercept of about zero. Thus, we140

calculated a fit line that has to intersect the point (0,0) and only determined the slope of this line, which is 1.208 (± 0.004). The

fit is shown as a blue line in Fig. 3 a). Since the number of data points N increases with increasing length of the time interval

T , the probability that the power at a single frequency exceeds a certain value by chance decreases (compare Eq. 4). As this

effect is larger than the opposite effect of the increase of Ni, the FAP levels also decrease. Fig. 3 b) shows the levels of a FAP

of 5% for the different time interval lengths as blue full circles.145

In a second analysis we varied the frequency range and repeated the analysis that was done before. The frequency ranges lay

between 1/2 – 1/5 day−1 and 1/2 – 1/90 day−1. A smaller frequency range should include a smaller number of independent

frequencies. As the decrease of Ni for a reduction of ∆f depends on the width of the peaks, and therefore on the length of the

time interval T , the decrease of Ni for the same reduction of ∆f has to be larger for larger T . This can be seen in Fig. 3 a),

where example results for the frequency ranges 1/2 – 1/5 day−1 and 1/2 – 1/10 day−1 are shown in black and red, respectively.150

For the smallest frequency range the lowest values can be seen and the largest decrease of Ni is observed for the longest time

interval T . Because of this dependency of the decrease of Ni on the time interval length, the fit lines are not shifted by a

constant value, but the slopes of the fit lines change. Thus, the slopes depend on frequency range ∆f . Fig. 3 c) shows the

dependency of the slopes on the frequency range ∆f . Obviously, for the analysed frequency ranges this dependency can be

described by a line. A fit to the data leads to the results for the slope of 2.92 (± 0.02) and for the intercept of -0.203 (± 0.008).155

The fit line is shown as black line. With the knowledge of these parameters the number of independent frequencies Ni can be

determined for each combination within the analysed parameter range by

Ni = (2.92 ·∆f − 0.203) ·T (6)

In the last analysis we evaluated the dependency of Ni on the number of data gaps in a fixed time interval. The frequency

ranges for this analysis were ∆f = 1/2 – 1/5 day−1, 1/2 – 1/10 day−1, and 1/2 – 1/60 day−1. We took a time interval of160

60 days and introduced 1 to 29 randomly distributed data gaps. We only removed data points inside the complete time interval,

i.e. both end points were always there and the time interval length was always 60 days. Since the peak width depends on the

length of the time interval, which is fixed, and not on the number of data points, the number of independent frequencies Ni is

supposed to be almost the same for different numbers of data gaps. Fig. 4 a) shows Ni in dependency of the number of data

gaps for different frequency ranges. In all cases only a slight decrease of Ni with increasing number of gaps can be seen. The165

decrease is slightly larger for that frequency ranges that lead to larger Ni values. But the relative decrease is very similar for

all shown situations. The decrease in all cases is only on the order of a few percent for 50% data gaps. This decrease is caused

by an on average very small decrease of the resolution caused by a small increase of the peak width. Although the number

of independent frequencies is nearly constant, this does not mean that the FAP levels stay the same. Since the number of data

points N decreases with increasing number of data gaps, the probability that the power at a single frequency exceeds a certain170

6

https://doi.org/10.5194/amt-2019-332
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



value increases (compare Eq. 4). Thus, the FAP for a certain peak height also increases. This increase is shown in Fig. 4 b).

The effect of the decrease of Ni on the FAP levels of 5% is typically on the order of a few ‰. Thus, a non-consideration of this

decrease of Ni would lead to a very small change of the FAP levels. Furthermore, the change when considering the decrease

would be negative, i.e. the FAP for the same height z would get smaller. Consequently, the FAP levels of 5% also has a smaller

value. Thus, a non-consideration would not change the judgement if a signal is significant or not in a false way. When a signal175

exceeds a higher value it will certainly exceed a smaller value, too. Nonetheless, in the FAP levels shown later on the effect of

the data gaps on the Ni values is considered.

4 Data evaluation

4.1 Artificial data

In order to study the performance of the approach we analysed different time series of artificial data. In this section we present180

selected examples of these time series. The total length of the time series was always 1 year (365 days) and the sampling was

1 day−1, which is the same as for the nightly mean OH∗ temperatures without data gaps.

The analysis of a single sinusoid is a very trivial problem and the approach delivers the expected results (not shown). As the

approach shall be used in the case of non stable periodicities, we focus here on such problems. The first example shows a time

series of a periodic signal with a period that increases with time from approximately 8 days to 16 days and an amplitude of 1 K.185

The time series is shown in Fig. 5 a) as black curve (the components signal (blue) and noise (green) are shown additionally

in seperate panels). The results of the analysis are shown in Fig. 5 b) and c) for the normalised power and the amplitude,

respectively. The y-axes of these two figures give the frequency and period, respectively, and the x-axes show the center days

of the sequentially analysed time intervals. The normalised power and the amplitude are shown color coded and the black

contour lines mark the FAP level of 5% (Ni was determined using Eq. 6). The results clearly show the change of the period190

with time and the normalised power is close to one. The small deviation to a value of one can be explained by the change of

the period which occurs on a smaller time scale than the interval size of 60 days. Thus, a sinusoid with a fixed period is not

able to explain the complete variance in each of the analysed time intervals. The results for the amplitude show values close

to 1 K, and, thus, also the expectation. The analysis was repeated for the same periodic signal with additional noise added to

the time series and also data gaps that have been incorporated. The standard deviation of the noise was 0.5 times the standard195

deviation of the signal and, thus, the variance of the noise is one quarter of that of the signal. Additionally, about 30% of the

data points have been randomly removed. The signal with gaps (blue curve), the noise (green curve) and the the complete time

series (sum of both; black curve) are shown in Fig. 5 d). The corresponding results are shown in Fig. 5 e) and f). The displayed

FAP level of 5% was determined for each LSP individually with respect to the varying length of the time interval (when end

points are missing) and the number of data points inside these time intervals. Additionally, the small decrease of Ni due to the200

data gaps was considered (see Sect. 3.2). The change of the period is still captured very well. In the case of noise and data gaps

the normalised power reduces to a value of about 0.8 as a part of the variance can be explained by the contribution of the noise

(ratio 4 to 1 for signal to noise). The amplitude shows some fluctuations, but these fluctuations go around a value of 1 K. In
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total, the results clearly capture the main features of the time series with respect to period, amplitude, and explained variance.

We additionally present two further examples. The time series and the results of the analyses are shown in Fig. 6. The first time205

series is composed of a periodic signal with a period of 25 days and an amplitude that varies between 0 and 1 K (Fig. 6 a) blue

curve in upper panel) and additional noise (Fig. 6 a) green curve in middle panel). The standard deviation of the noise was again

0.5 times the standard deviation of the signal and about 30% of the data points have been removed. The complete time series

is shown as a black curve in the lower panel of Fig. 6 a). The results for the normalised power and the amplitude are shown

in Fig. 6 b) and c), respectively. The normalised power shows an increasing value to the center of the complete time interval.210

This behaviour is caused by the contribution of the noise to the total time series, which is much larger when the amplitude

is small and decreases with increasing amplitude of the signal. The result for the amplitude nicely reflects the increase of the

amplitude to the center and the following decrease to the end of the time series. As the variation of the amplitude occurs on a

smaller time scale than the chosen time interval for the analysis the maximum value reached is about 0.9 K. In total, the main

features of the signal are captured very well by the analysis and the correct period and the variation of the amplitude with time215

are detected. The last example shows the sum of the two former ones. Thus, the complete time series (Fig. 6 d) black curve

in lower panel) is composed of a sinusoid with an amplitude of 1 K and an increasing period (Fig. 6 d) blue curve in upper

panel), a periodic signal with a period of 25 days and an amplitude that varies between 0 and 1 K (Fig. 6 d) red curve in second

panel), and noise (Fig. 6 d) green curve in third panel). The standard deviation of the noise and the amount of data gaps are

the same as before. The results for the normalised power and amplitude are presented in Fig. 6 e) and f), respectively. The first220

signal can significantly be detected during the whole time and the increase of the period from about 8 to 16 days is captured

very well. As the amplitude of the second signal increases to the center of the complete time interval, this signal can only be

significantly detected in the middle of the complete time interval. The normalised power reflects the different contributions of

the two signals to the complete time series very well. In the middle of the complete time series each single signal contributes to

almost the same amount as the amplitude is about 1 K in both cases. The remaining part of the total variance can be explained225

by the noise (variance of noise is 0.25 times variance of sum of signals). At the beginning and the end nearly only the first

signal and additionally the noise contribute to the complete time series. The results for the amplitude also show the main

features of the two signals. For the first signal the amplitude stays at around 1 K during the whole time and the increasing and

thereafter decreasing amplitude behaviour of the second signal is also captured. Compared to the former example the result for

the amplitude is noisier, because of the larger absolute noise in the last example.230

In summary, the applied method is able to detect periodic signals that vary with time, i.e. the amplitude or the period changes

with time. In cases where changes occur on much smaller time scales than the used time window the results show some kind

of averaging. Then the maximum values of the amplitude or the explained variance cannot be obtained and a mean value in

the analysed time window is derived. The method is also very useful when noise is added to the time series and additionally

data gaps are introduced. Although about 30% of the data points have been removed, the results are very good and still reflect235

the behaviour of the signals. Thus, the presented method is well suited to analyse time-varying periodicities even in the case of

unequally spaced time series.
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4.2 Measurement data

The OH∗ temperatures are derived from measurements by a GRIPS (GRound-based Infrared P-branch Spectrometer) instru-

ment operated in Wuppertal (51◦ N, 7◦ E, Germany). This GRIPS instrument measures 3 emission lines of the OH∗(3,1) band,240

the P1(2), P1(3) and P1(4) line. The relative intensities of these lines are used to derive rotational temperatures (Bittner et al.,

2000, and references therein). The OH layer from which the emissions originate is located in the mesopause region. The mean

altitude is about 87 km and the layer has a full width at half maximum (FWHM) of about 9 km (e.g. Baker and Stair, 1998;

Oberheide et al., 2006). Measurements are carried out every night, except for nights with bad weather conditions. The OH∗

temperatures have been continuously observed from Wuppertal since mid-1987 and a GRIPS instrument is still in operation245

to continue the observations. Until mid-2011 the measurements have been carried out by the GRIPS-II instrument (see Bittner

et al., 2000, 2002, for an instrument description) and after then the GRIPS-N instrument (follow-up of GRIPS-II) is used to

continue the observations (Kalicinsky et al., 2016).

Fig. 7 shows the nightly mean OH∗ temperatures for the year 1989 as an example. The temperatures show the typical seasonal

behaviour with a temperature minimum in summer and a maximum in winter. This behaviour can be described with three main250

components: an annual, a semi-annual, and a ter-annual cycle (Bittner et al., 2000). The red curve in the figure shows a least

squares fit to the data that considers these three components. Such fits are typically used to determine the annual average OH∗

temperatures since a simple arithmetic mean is not advisable because of the data gaps (e.g. Bittner et al., 2002; Offermann

et al., 2010; Perminov et al., 2014; Kalicinsky et al., 2016). The lower panel of Fig. 7 shows the residual temperatures, i.e. the

OH∗ temperatures minus the determined fit curve. Bittner et al. (2000) already showed that such residual temperatures include255

statistically significant periodic fluctuations. We now analyse the residual temperatures with respect to such fluctuations using

the moving LSP approach.

The results for the normalised power and the amplitude are shown in Fig. 8. Different events with significant periodic fluctu-

ations can be detected when using the moving LSP approach. The largest event is detected at the beginning of the year. The

determined period is about 40 days and the amplitude 6 to 7 K. This behaviour can also be seen in the residual temperatures260

just by eye (compare Fig. 7). It seems that the fluctuations continue with a slightly larger period and smaller amplitude, but

the result cannot be judged as significant after a center day of the interval of about 70 days. As can be seen in the residual

temperatures the number of observations between day 75 and 125 is very low and a lot of data gaps are present. The FAP levels

for time windows including a large number of data gaps increase then and, thus, the results are not significant, although it is

likely that the signal is still there and real. Around a center day of 250 days a second significant result for a fluctuation with265

a period of about 50 days is detected, but the amplitude is smaller with 4 to 5 K. At the end of the year additional significant

events with smaller periods of about 10 and 16 days can be seen. All of these significant fluctuations agree well with the find-

ings of Bittner et al. (2000), where the authors analysed the same observations using a wavelet transformation and assimilation

technique based on the maximum entropy method to get rid of the data gaps. Our new method enables now a safe detection of

such significant fluctuations without the need of processing the data before the analysis.270
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5 Summary and conclusions

We present an approach to analyse time series with unequal spacing with respect to significant period fluctuations. The approach

is also able to derive time-resolved information on the periods and amplitudes of the detected fluctuations. It is based on the

classical Lomb-Scargle periodogram (LSP), a method that can handle unequally spaced time series. Additionally, it uses the

idea of a moving window to enable the determination of time-resolved periods and amplitudes. The significance of the results is275

analysed with the typically used false alarm probability (FAP). As the determination of the FAP levels needs many simulations,

we derived the dependencies of the FAP levels on the length of the analysed time interval T , the frequency range ∆f , and

the number of data gaps to find a fast and easy way to calculate the FAP levels in the used parameter range. Thus, we can

avoid a large number of simulations. In the analysed parameter range the number of independent frequencies Ni shows a linear

dependency on the length of the time interval T , because the peak width is inversely proportional to T . Furthermore, the slope280

of the line that describes this dependency is different for different frequency ranges, where a smaller frequency range ∆f

reduces the slope. We used these two relationships to fastly calculate the FAP levels. The number of data gaps has only a very

minor effect, because the peak width depends on the length of the time interval and not on the number of data points.

The approach was tested with different artificially generated time series. These time series include variations of the period and

amplitude with time and, additionally, noise is added and data gaps have been introduced. In all cases the approach shows very285

good results and, thus, the approach is a suitable method for the time-resolved detection of periodic fluctuations, even in the

case of unequal spacing. Finally, we analysed the nightly mean OH∗ temperatures that have been observed from Wuppertal

(51◦ N, 7◦ E, Germany) in the year 1989. The results show several significant events with fluctuations that have periods in the

range between 10 and 50 days and amplitudes between 3 and 7 K. These significant results agree very well with the results of

a former study carried out by Bittner et al. (2000) without the need of processing the data before the analysis.290

Data availability. The nightly mean OH∗ temperatures can be obtained by request to the corresponding author or to Peter Knieling (knieling@uni-

wuppertal.de).

Author contributions. CK conceptualised the method. CK and RR performed the simulations and did the analyses under intensive discussion

with RK. PK provided th OH∗ data. The manusript was written by CK with contributions from all coauthors.

Competing interests. The authors declare that no competing interests are present.295

Acknowledgements. This work was funded by the German Federal Ministry of Education and Research (BMBF) within the ROMIC (Role

Of the Middle atmosphere In Climate) project MALODY (Middle Atmosphere LOng period DYnamics) under Grant no. 01LG1207A.

10

https://doi.org/10.5194/amt-2019-332
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



References

Baker, D.J., and Stair Jr., A.T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 37, 611,

doi:10.1088/0031-8949/37/4/021, 1998.300

Bittner, M., Offermann, D., and Graef, H.H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res.,

105, 2045–2058, doi:10.1029/1999JD900307, 2000.

Bittner, M., Offermann, D., Graef, H.H., Donner, M., and Hamilton, K.: An 18-year time series of OH∗ rotational temperatures and middle

atmosphere decadal variations, J. Atmos. Sol. Terr. Phys., 64, 1147–1166, doi:10.1016/S1364-6826(02)00065-2, 2002.

Cumming, A., Marcy, G.W., Butler, R.P.: The lick planet search: detectability and mass thresholds, Astrophys. J., 526, 890–915,305

doi:10.1086/308020, 1999.

Horne, J.H., and Baliunas, S.L.: A prescription for period analysis of unevenly sampled time series, Astrophys. J., 302, 757–763, 1986.

Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J: Long-term dynamics of OH∗ temperatures over

central Europe: trends and solar correlations, Atmos. Chem. Phys., 16, 15033–15047, doi:10.5194/acp-16-15033-2016, 2016.

Lomb, N.R.: Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci., 39, 447–462, 1976.310

Oberheide, J., Offermann, D., Russell III, J.M., and Mlynczak, M.G.: Intercomparison of kinetic temperature from 15 µm CO2 limb

emissions and OH∗(3,1) rotational temperature in nearly coincident air masses: SABER, GRIPS, Geophys. Res. Lett., 33, L14811,

doi:10.1029/2006GL026439, 2006.

Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J., and Steinbrecht, W.: Long-term trend and solar cycle variations of

mesospheric temperature and dynamics, J. Geophys. Res., 115, D18127, doi:10.1029/2009JD013363, 2010.315

Perminov, V.I., Semenov, A.I., Medvedeva, I.V., and Zheleznov, Yu.A.: Variability of mesopause temperature from the hydroxyl airglow

observations over mid-latitudinal sites, Zvenigorod and Tory, Russia, Adv. Sp. Res., 54, 2511–2517, doi:10.1016/j.asr.2014.01.027, 2014.

Scargle, J.D.: Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J.,

263, 835–853, 1982.

Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, California, United320

States of America, 1997.

Schwarzenberg-Czerny, A.: The distribution of empirical periodograms: Lomb-Scargle and PDM spectra, Mon. Not. R. Astron. Soc., 301,

831–840, doi:10.1111/j.1365-8711.1998.02086.x, 1998.

Zechmeister, M., Kürster, M.: The generalised Lomb-Scargle periodogram - A new formalism for the floating-mean and Keplerian peri-

odograms, Astron. Astrophys., 496, 577–584, doi:10.1051/0004-6361:200811296 , 2009.325

11

https://doi.org/10.5194/amt-2019-332
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



10 20 30 40 50 60
period [days]

0.0

0.2

0.4

0.6

0.8

1.0
no

rm
. p

ow
er

0.0

0.2

0.4

0.6

0.8

1.0

am
pl

itu
de

 [K
]

Figure 1. Example LSP for a time series composed of two sinusoids. The first one has a period of 10 days and an amplitue of 1 K and the

second has a period of 35 days and an amplitue of 0.5 K. The normalised power is shown as black curve and the amplitude as red curve with

a second axis to the right.
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Figure 2. False alarm probability (FAP) and Prob(z > z0) at a single frequency derived from ten thousand of noise samples with 60 data

points each. The data sampling was 1 day−1 and the analysed frequency range ∆f = 1/2 – 1/60 days−1. The derived Prob(z > z0) is shown

with blue coloured circles and the theoretical curve (Eq. 4) is depicted in magenta. The determined FAP is shown by the black coloured circles

and the fit to these data points using Eq. 5 is displayed as red curve. The dashed horizontal line marks a FAP of 5%.
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Figure 3. a) and b): Dependency of Ni and the FAP level of 5% on the length of the time interval T and the frequency range. The analysed

frequency ranges are 1/2 – 1/5 days−1, 1/2 – 1/10 days−1, and 1/2 – 1/60 days−1 and the time series of the simulations have no data gaps.

c): Dependency of the slopes (lines from panel a) and additionally for the frequency ranges 1/2 – 1/30 days−1 and 1/2 – 1/90 days−1) on

the frequency range ∆f . The error bars show two times the standard error of the slopes.
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Figure 4. Dependency ofNi and the FAP level of 5% on the number of data gaps in a fixed time interval of length T . The analysed frequency

ranges are 1/2 – 1/5 days−1, 1/2 – 1/10 days−1, and 1/2 – 1/60 days−1 and the time interval length is 60 days.
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Figure 5. a): Time series of a periodic signal with increasing period. The upper panel shows the signal, the middle panel the noise and the

lower panel the sum of both. b) and c): Results for the normalised power and amplitude. The results are displayed at the center day of the

corresponding time window. The length of the time window was 60 days. The black contours mark the significant results. d) – f): Same as

for a) – c) with additional noise added to the time series and data gaps.
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Figure 6. a): Time series of a periodic signal with varying amplitude and additional noise and data gaps. The upper panel shows the signal,

the middle panel the noise and the lower panel the sum of both. b) and c): Results for the normalised power and amplitude. The results are

displayed at the center day of the corresponding time window. The length of the time window was 60 days. The black contours mark the

significant results. d): Time series of a periodic signal with increasing amplitude plus a periodic signal with varying amplitude and additional

noise and data gaps. The upper two panels show the two signals, the third panel the noise and the lower panel the sum of all. e) and f): Same

as for b) and c).
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Figure 7. Nightly mean OH∗ temperatures observed from Wuppertal in the year 1989. The red curve shows the fit of the seasonal cycle

including an annual, semi-annual, and ter-annual component. The residual temperatures (measurements minus fit) are shown in the lower

panel.
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Figure 8. Results for the normalised power and amplitude for the analysis of the temperature residual of the GRIPS observations in 1989. The

results are displayed at the center day of the corresponding time window. The length of the time window was 60 days. The black contours

mark the significant results.
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